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Abstract
We study the transport properties of directed percolation clusters at the upper
critical dimension dc = 4 + 1, where critical fluctuations induce logarithmic
corrections to the leading (mean-field) scaling behaviour. Employing field
theory and renormalization group methods we calculate these logarithmic
corrections up to and including the next to leading correction for a variety
of observables, viz. the connectivity, i.e., the probability that two given points
are connected, the average two-point resistance and some of the fractal masses
describing percolation clusters. Furthermore, we study logarithmic corrections
for the multifractal moments of the current distribution on directed percolation
clusters.

1. Introduction

Directed percolation (DP) [1, 2] is perhaps the simplest model for directed connectivity in
disordered systems. It differs from conventional isotropic percolation (IP) [3] in that activity
(in the following electric current) can percolate only along a certain distinguished direction.
A simple and intuitive realization of DP is the random diode network (RDN), where nearest
neighbouring bonds on a tilted hypercubic lattice are randomly occupied (with probability p)
with diodes, see figure 1. Evidently, the effective conductivity along the distinguished direction
depends on the occupation probability p. If p is small, all clusters of connected sites are finite
so that the conductivity vanishes in the limit of large distances. On the other hand, if p exceeds
a certain critical threshold pc, there is a finite probability to find a directed path between two
distant points, leading to a finite resistance when averaged over many independent samples.
At the critical threshold p = pc, the system undergoes a continuous phase transition where
clusters of conducting paths display a fractal structure. In contrast to IP, these clusters are
anisotropic and at criticality they are rather self-affine than self-similar.

In this paper we are interested in the electrical transport properties of DP clusters as realized
by the RDN. Due to the self-affinity of the critical clusters, transport quantities like the average
resistance MR(x, x′) between two connected points x and x′ exhibit a scaling behaviour as is
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Figure 1. (1 + 1)-dimensional directed bond percolation realized as a random diode network on a
tilted square lattice. Electrical current can percolate only along the distinguished direction t .

x ’x

Figure 2. Two-port setup for measuring the resistance of a DP cluster. The figure shows a generic
current-carrying backbone when a current I is inserted at a point x and withdrawn at a point x′. The
thickness of the bonds indicates the intensity of the current. The thickest bonds are the so-called
red bonds that carry the full current.

(This figure is in colour only in the electronic version)

typical for (anisotropic) critical phenomena. Below the upper critical dimension dc = 4 + 1
this scaling behaviour is characterized by critical exponents which are, due to the effect of
fluctuations, anomalous. Above dc fluctuations are unimportant and the scaling behaviour
is purely of mean-field type. Right at dc, fluctuations lead to logarithmic corrections to the
mean-field behaviour. To date, the critical exponents for a variety of transport quantities
characterizing DP clusters are known to second order in an ε expansion about dc, namely the
exponents for MR(x, x′) [4, 5], for the fractal masses MB(x, x′), Mred(x, x′) and Mmin(x, x′),
respectively, of the backbone, the red (singly connected) bonds and the chemical (shortest)
path [4, 6] as well as the exponents for the multifractal moments M (l)

I (x, x′) of the current
distribution [7, 8] (cf figure 2). Logarithmic corrections to these quantities have not previously
been studied. With the computer resources and elaborate algorithms available today, computer
simulations can explore high dimensions and it seems to be within reach to investigate the
transport properties of DP clusters at dc numerically with good precision. Thus, we feel that
it becomes important to investigate the corresponding logarithmic corrections analytically.
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The system in statistical physics for which logarithmic corrections have been studied
perhaps most thoroughly are linear polymers. The work of Schäfer and co-workers [9, 10]
showed that knowing the leading logarithmic corrections is, at least in the case of linear
polymers, not sufficient to obtain a satisfactory agreement between theory and simulations.
Rather, one has to push the theory beyond the leading corrections, which involves, in addition
to the basic analysis of the RG mapping, the calculation of scaling functions. We expect that
higher-order logarithmic corrections will be likewise important for the transport properties
of DP clusters. In part, this expectation is corroborated by the experience one has with
logarithmic corrections in other percolation problems. A comparison between numerical [11]
and analytical [12] results for dynamic isotropic percolation at the respective upper critical
dimension clearly indicates the importance of the higher order logarithmic corrections.
Simulations [13] on dynamical aspects of DP at dc, on the other hand, show a satisfactory
agreement with our theoretic predictions [14] already at the level of the leading logarithmic
correction. There are no simulations available yet for a comparison to our analytic results on
logarithmic corrections for transport on IP clusters [15].

In this paper we investigate the logarithmic corrections for transport on DP clusters
up to and including the next to leading logarithmic correction. For simplicity, we assume
that x = (0, 0) and x′ = (0, t). We calculate the quantities of interest as functions of
the longitudinal or time-like variable t , that is MR(t), MB(t), Mred(t) and Mmin(t) as well
as M (l)

I (t). By and large, as a byproduct we also obtain the connectivity, i.e., the probability
that the points x = (0, 0) and x′ = (0, t) are connected, P(t).

The outline of this paper is as follows. In section 2 we briefly review a generalization
of the RDN, viz. the random resistor diode network (RRDN), that has certain advantages
over the RDN with respect to setting up a field theoretic model. Then, we explain our field
theoretic model, including its variants, and highlight its physical contents. Section 3 reviews
renormalization group results for the RRDN in order to establish notation and to provide known
results that we need as an input as we go along. Section 4 represents the main part of this paper.
Here we derive the desired logarithmic corrections and we state our final results. Concluding
remarks are given in section 5. Technical details on the calculation of scaling functions are
relegated to an appendix.

2. The model, its variants and the physical contents

2.1. The random resistor diode network

The RRDN introduced by Redner [16–18] is a simple model for electric transport in irregular
media that comprises both DP and IP. A RRDN consists of a d-dimensional hyper-cubic lattice
in which nearest-neighbour sites are connected by a resistor, a positive diode (conducting only
in a preferred direction), a negative diode (conducting only opposite to the preferred direction),
or an insulator with respective probabilities p, p+, p− and q = 1− p− p+− p−. To be specific,
let us choose n = 1/

√
d(1, . . . , 1) as the preferred direction and assume that the bonds b〈i, j〉

between two nearest neighbouring lattice sites i and j are directed so that b〈i, j〉 · n > 0.
Moreover, let us suppose that the directed bonds obey the generalized Ohm’s law

σb〈i, j 〉(Vb〈i, j 〉)Vb〈i, j 〉 = Ib〈i, j 〉, (1)

where Vb〈i, j 〉 = Vj − Vi is the voltage drop over the bond between sites j and i and Ib〈i, j 〉 is the
associated current. The bond conductances σb = σ γb are random variables where γb takes on
the values 1, θ(V ), θ(−V ) (as usual, θ denotes the Heaviside function), and 0 with respective
probabilities p, p+, p− and q , and where σ is a positive constant. Note that this assumption
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means that the diodes are idealized, i.e., under forward-bias voltage they behave as ‘ohmic’
resistors, whereas they are insulating under backward-bias voltage. Further below we will also
deal with nonlinear voltage–current characteristics under forward-bias of the type V ∼ I r .
The three dimensional phase diagram, i.e., the tetrahedron spanned by the four probabilities,
features a non-percolating and three percolating phases, viz. isotropic, positively directed,
and negatively directed, with continuous transitions between the four phases. For a detailed
discussion of the phase diagram see [16, 17].

The long-length-scale behaviour of the critical RDN and that of the RRDN at either of
the two transitions from the non-percolating to the directed percolating phases are equivalent,
provided of course, that the distinguished direction of the RDN corresponds to the distinguished
direction of the RRDN or its opposite direction, respectively. Thus, we may investigate the
transport properties of DP clusters as realized by the RDN via studying the RRDN at either
of the two transitions from the non-percolating to the directed percolating phases. We prefer
to work with the RRDN because it has certain advantages with respect to setting up a field
theoretic model. For details on deriving a field theoretic model for the RRDN we refer to [4, 5].
In the vicinity of the transitions from the non-percolating to either of the directed percolating
phases this model can be written in the form of a dynamic response functional [19–21],

J =
∫

dd⊥ r dt

{
1

2

∑
�λ �=�0

s−�λ

[
ρ
(
τ − ∇2 +w�λ2

)
+ [θ (λ0)− θ (−λ0)]

∂

∂ t

]
s�λ

+
ρg

6

∑
�λ,�λ′,�λ+�λ′ �=�0

s−�λs−�λ′ s�λ+�λ′

}
, (2)

whose ingredients have meaning as follows. s�λ = s�λ(x) is an order parameter field which
lives on the d-dimensional real space with coordinates x = (r, t), where t ∼ x‖ = x · n
is the longitudinal part of x along the preferred direction and r = x⊥ is the corresponding
(d⊥ = d − 1)-dimensional transversal part. In addition to the space coordinate, the order
parameter field depends on a D-fold replicated current variable �λ living on a D-dimensional
replica space which we will explain a little further below. Regarding the current variable the
order parameter field satisfies the constraint s�0(x) = 0. The parameter τ specifies the distance
in phase space to the transition from the non-percolating to the directed phase of interest which
occurs in mean field theory at τ = 0. w is proportional to σ−1 and ρ is a kinetic coefficient.
The meaning of λ0 will become clear shortly when we elaborate on the replica space.

For regularization purposes, the replica space resembles a discretized D-dimensional
torus, i.e., �λ = �k	λwhere �k is a D-dimensional vector with integer components k(α) satisfying
−M < k(α) � M and k(α) = k(α) mod(2M). To extract physical quantities from the
replica formulation one has to study the limit D → 0, M → ∞ with (2M)D → 1 and
	λ = λM/

√
M → 0.3 In addition to these settings dictated by regularization issues, we work

near the limit when all the components of �λ are equal and continue to large imaginary values,
i.e., we set [22]

λ(α) = iλ0 + ξ (α) (3)

with real λ0 and ξ (α) satisfying |λ0|  1 and
∑D

α=1 ξ
(α) = 0. This specific choice for the

replica current is tailored so that: first, we can assign a sign (positive or negative direction)
to the multidimensional replica currents. Second, it allows us in actual calculations involving
summations or integrations over the replica currents to resort to the saddle point approximation
which is crucial since the elementary circuit elements as modelled by equation (1) are nonlinear.

3 The constant λM which sets the width of the voltage interval such that [−λM
√

M < λ(α) � λM
√

M] is a redundant
scaling parameter in the limit D → 0, M → ∞ and hence our predictions are independent of its value.
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Finally, we invoke the conditions λ2
0 � D−1 and Dλ2

0 � �ξ2 � 1 making �λ2 = �ξ2 − Dλ2
0 a

small positive quantity so that expansions in powers of �λ2 are reliable.
After this excursion into formal aspects which we feel, however, was necessary for a

proper definition of the model, we now turn to its physical contents. One of the basic quantities
describing the electric transport properties of DP clusters is the average macroscopic resistance

MR(x, x′) = 〈χ+(x, x′)R+(x, x′)〉C

P(x, x′)
(4)

when an external current I is inserted at a point x and extracted at another point x′ provided
that the two points are positively connected. In equation (4), R+(x, x′) is the total resistance
if I is inserted at x and extracted at point x′ and χ+(x, x′) is an indicator function that gives
the value 1 one if x and x′ are positively connected (if I can percolated from x to x′), and zero
otherwise. 〈· · ·〉C denotes the disorder average over all configurations of the diluted lattice and
P(x, x′) = 〈χ+(x, x′)〉C is the connectivity that measures the probability for x and x′ being
positively connected. The model is set up so that the two-point correlation function

G2(x, x′, �λ) =
〈
s(x, �λ)s(x′,−�λ)

〉
(5)

is a generating function for MR(x, x ′). This can be seen by noting that

G2(x, x′, �λ) =
〈

exp

[
−�λ2

2
R+(x, x′)

]〉

C

= P(x, x′)

{
1 − �λ2

2
MR(x, x′) + · · ·

}
, (6)

up to an unimportant multiplicative factor that goes to 1 in the replica limit D → 0. Thus, once
we have calculated the two-point correlation function, as we are able by using renormalized
field theory, we can extract the average resistance by using

MR(x, x′) = ∂

∂(−�λ2/2)
ln G2

(
x, x′, �λ

)∣∣∣∣�λ=0
. (7)

2.2. The nonlinear RRDN

By generalizing the model we can study much more than just the average resistance. Suppose
that the directed bonds obey the nonlinear Ohm’s law [23]

σb〈i, j 〉
(
Vb〈i, j 〉

)
Vb〈i, j 〉

∣∣Vb〈i, j 〉

∣∣s−1 = Ib〈i, j 〉 . (8)

The dynamic functional of the nonlinear RRDN constituted by these elements is of the same
form as the functional (2), however, with the replacement [4, 6]

w�λ2 → wrr (�λ), (9)

where r = 1/s and

r (�λ) = −
D∑
α=1

(−iλ(α)
)r+1

. (10)

The two-point correlation function in the generalized model has the property that, up to an
unimportant constant,

G2(x, x′, �λ) =
〈

exp

[
−r (�λ)

r + 1
Rr,+(x, x′)

]〉

C

= P(x, x′)

{
1 − r (�λ)

r + 1
MRr (x, x′) + · · ·

}
, (11)
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where Rr,+(x, x′) is the nonlinear resistance between the two terminals. Thus, the two-point
correlation function is here a generating function for the average nonlinear resistance

MRr (x, x′) = 〈χ+(x, x′)Rr,+(x, x′)〉C

P(x, x′)
,

which can be calculated by using

MRr (x, x′) = ∂

∂(−r (�λ)/(r + 1))
ln G2

(
x, x′, �λ

)∣∣∣∣�λ=0

. (12)

The generalized RRDN has the benefit that it features the free parameter r and that this
parameter can be used to access several physical quantities. For r → 1 one retrieves, of
course, the linear average resistance MR(x, x′). For r → −1+, one obtains the mass (the
average number of bonds) MB of the backbone,

MB(x, x′) ∼ lim
r→−1+

MRr (x, x′), (13)

as one can see straightforwardly by considering the overall dissipated electric power. Following
the lines of Blumenfeld and Aharony [24], one can show that

Mred(x, x′) ∼ lim
r→∞ MRr (x, x′), (14)

for the mass of the red bonds and

Mmin(x, x′) ∼ lim
r→0+

MRr (x, x′), (15)

for the mass of the chemical path.

2.3. The noisy RRDN

To study multifractal aspects of transport on DP clusters we can generalize the RRDN so that
it features static noise. Suppose that the directed bonds have a current–voltage characteristic
as stated in equation (1) but that the value of the conductance of occupied bonds under forward
bias fluctuates statically about some average value. To model this effect we set σb = ςb γb

where ςb is a random variable distributed according to some distribution function f with mean
ς = σ and higher cumulants	(l�2) satisfying 	(l) � σ l . The condition on the cumulants is
imposed to suppress unphysical negative conductances. The distribution function f might for
example be Gaussian, however, our considerations are not limited to this particular choice.

In order to access the multifractal properties of this noisy RRDN we must treat the average
〈· · ·〉C over the configurations of the diluted lattice and the noise average {· · ·} f independently.
For this purpose we go beyond the usual replica trick and use a second replication parameter

so that the replicated currents
↔
λ are (D × E) tuples and not merely D tuples [25]. Though

the replica space for this model is somewhat more complicated than the one discussed in
section 2.1, essentially the same regularization issues appear here and we can make much the
same settings and impose much the same conditions as in section 2.1 albeit in a somewhat
more general form. For details we refer to [7, 8] where we derived and analysed a field
theoretic model for the noisy RRDN. The dynamic functional embodying this model near the
transitions from the non-percolating to the directed percolating phases has the same form as
the functional (2). However, we have to make the replacement [7, 8]

�λ → ↔
λ (16)

and there is an additional term in the dynamic functional,

J → J +
∞∑

l=2

vlV (l), (17)
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with dangerously irrelevant interactions

V (l) = ρ

2

∫
dd⊥ r dt O(l)(r, t) (18)

with coupling constants vl ∼ 	(l)/σ 2l . Here, the O(l) are composite fields

O(l) =
∑

↔
λ

s−↔
λ

Kl(
↔
λ)s↔

λ
(19)

featuring the homogeneous polynomials

Kl(
↔
λ) =

E∑
β=1

[ D∑
α=1

(
λ(α,β)

)2]l

. (20)

The two-point correlation function G2(x, x′,
↔
λ) of the noisy RRDN contains a lot of

information on the transport properties of DP clusters. In particular it contains the so-called
noise cumulants

C (l)
R (x, x′) =

〈
χ+(x, x′){R+(x, x′)l}(c)f

〉
C

P(x, x′)
, (21)

where {R+(x, x′)l}(c)f stands for the lth cumulant of the resistance R+(x, x′) with respect to f .
This can be understood by noting that, up to an unimportant multiplicative constant that goes
to one in the replica limit D → 0,

G2(x, x′),
↔
λ =

〈
exp

[ ∞∑
l=1

(−1/2)l

l!
Kl(

↔
λ)
{

R+
(
x, x′)l }(c)

f

]〉

C

= P(x, x′)
{

1 +
∞∑

l=1

(−1/2)l

l!
Kl(

↔
λ)C (l)

R (x, x′) + · · ·
}
, (22)

i.e., the two-point correlation function is a generating function for the noise cumulants which
can be extracted by using

C (l)
R (x, x′) = ∂

∂
[
(−1/2)l

l! Kl(
↔
λ)
] ln G2(x, x′,

↔
λ)

∣∣∣∣↔
λ=↔

0

. (23)

Although the noise cumulants are interesting in their own right, we are primarily interested in
a family of observables that is more intuitive, viz. the multifractal moments

M (l)
I (x, x′) =

〈
χ+(x, x′)

∑
b

(
Ib/I

)2l
〉
C

P(x, x′)
(24)

of the current distribution. Using Cohn’s theorem [26], one can show that

M (l)
I (x, x′) ∼ C (l)

R (x, x′). (25)

This relation allows us to study the multifractal current distribution indirectly via the noise
cumulants, which is important, since, to our knowledge, there is no direct way of calculating
the moments of the current distribution by field theoretic means.
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3. Renormalization

In recent years we have investigated the scaling behaviour of the average resistance, the
fractal masses and the multifractal moments of the current distribution below the upper critical
dimension d⊥ = 4 [4–8]. In particular we calculated various scaling exponents and fractal
dimensions by using renormalized field theory. The aim of this section is to briefly review
central elements of our field theory to provide background, to establish notation and to gather
previous results that we will need as input as we go on. For background on renormalized field
theory in general we refer to [27].

3.1. The linear and the nonlinear RRDN

To keep our presentation compact, we will review here only the general case, i.e., the nonlinear
RRDN. The linear RRDN can be retrieved by simply letting r → 1.

As usual, a central building block of our renormalization group analysis is a diagrammatic
perturbation theory. Here, the diagrammatic elements for constructing Feynman diagrams are
the vertex ρg and the propagator

G̃(p, t, �λ) = G̃+(p, t, �λ) + G̃−(p, t, �λ), (26)

with

G̃±(p, t, �λ) = θ (±t) θ (±λ0) exp

[
∓ρ
(
τ + p2 +wrr (�λ)

)
t

] (
1 − δ�λ,�0

)
, (27)

where the factor (1 − δ�λ,�0) enforces the constraint �λ �= �0. For the actual calculations it is

sufficient to keep either G̃+(p, t, �λ) or G̃−(p, t, �λ) and we choose to keep G̃+(p, t, �λ).
Calculating the conducting Feynman diagrams in dimensional regularization, one

encounters ultraviolet divergences in the form of poles in the deviation ε = 4 − d⊥ from
the upper critical transversal dimension d⊥ = 4. These ε poles can be handled by using the
renormalization scheme

s → s̊ = Z 1/2s, ρ → ρ̊ = Z−1 Zρρ, (28a)

τ → τ̊ = Z−1
ρ Zτ τ, wr → ẘr = Z−1

ρ Zwrwr , (28b)

g2 → g̊2 = Z−1 Z−2
ρ Zu G−1

ε uµε, (28c)

where µ−1 is the usual arbitrary mesoscopic length scale. The factor Gε = (4π)−d⊥/2�(1 +
ε/2), with � denoting the Gamma function, is introduced for convenience. Z , Zτ , Zρ and Zu

are the usual DP Z factors known to second order in ε [28, 29]. In our work on the linear
RRDN, see [4, 5], we determined Zw = Zw1 to second order in ε. Studying the nonlinear
RRDN [4, 6], we showed to two-loop order that

Z0 = lim
r→0

Zwr = Z , (29a)

Z−1 = lim
r→−1+

Zwr = 1, (29b)

Z∞ = lim
r→∞ Zwr = Zτ . (29c)

It is not unreasonable to expect that these special relations hold to arbitrary order in perturbation
theory, i.e., that they are Ward identities resulting from the symmetries of the system.
Identifying these symmetries and proving the presumable Ward identities is a challenging
open issue for future work. Here, for our calculations to follow below we need to know the
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renormalization factors explicitly only to one-loop order,

Z = 1 +
u

4ε
, Zρ = 1 +

u

8ε
, (30a)

Zτ = 1 +
u

2ε
, Zu = 1 +

2u

ε
, (30b)

Zwr = 1 +
u

2ε

(
1 − 1

2r+1

)
. (30c)

The fact that the unrenormalized theory must be independent of the inverse length scale
introduced in the renormalization process can be used in a routine fashion to set up a Gell-
Mann–Low renormalization group equation (RGE) for the correlation functions. For an N
point function this RGE reads

[
Dµ,r +

N

2
γ

]
G N

({
r, ρt, wrr (�λ)

}
; τ, u, µ

)
= 0, (31)

where

Dµ,r = µ
∂

∂µ
+ β

∂

∂u
+ τκ

∂

∂τ
+ wrζr

∂

∂wr
+ ρζρ

∂

∂ρ
. (32)

The functions featured in the RGE are given to two-loop order by

β(u) = −εu +
3u2

2
−
(

169 + 106 ln
4

3

)
u3

128
+ O(u4), (33a)

κ(u) = 3u

8
−
(

7 + 10 ln
4

3

)
7u2

256
+ O(u3), (33b)

γ (u) = −u

4
+

(
6 − 9 ln

4

3

)
u2

32
+ O(u3), (33c)

ζρ(u) = −u

8
+

(
17 − 2 ln

4

3

)
u2

256
+ O(u3), (33d)

ζr (u) = ζr,1u + ζr,2u2 + O(u3). (33e)

The coefficient of the first order term in equation (33a) is known for arbitrary r ,

ζr,1 =
(

3

8
− 1

2r+2

)
.

The coefficient ζr,2 is known only for particular values of r . Our two-loop analysis of the linear
RRDN with r = 1 gave

ζ1,2 = − 5
32 . (34)

For the remaining values of r of interest here, ζr,2 can be inferred readily from the relations

ζ−1(u) = γ (u)− ζρ(u), ζ0(u) = −ζρ(u), (35a)

ζ∞(u) = κ(u) (35b)

stemming from the special relations between the Z -factors.
In the following we will use for the RGE-functions an abbreviated notation of the

type f (u) = f1u + f2u2 + · · ·. For example, we will write equation (33a) as β(u) =
β1u + β2u2 + β3u3 + O(u4) and likewise for the other RGE-functions.
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3.2. The noisy RRDN

The parameters vl featured in the dynamic functional of the noisy RRDN are, in contrast to
the relevant parameterw = w1, dangerously irrelevant, i.e., they are irrelevant on dimensional
grounds but they must not be neglected in studying the noise cumulants because we otherwise
inevitably lose the information we are interested in. Due to their irrelevance, the vl cannot be
treated in the same fashion as the relevantw. A proper treatment of the vl can be achieved by
looking at insertions of the dangerously irrelevant interactions V (l) into Feynman diagrams.
Due to the irrelevance, insertions of V (l) generate a multitude of terms corresponding to
interactions with equal or lower naive dimension than V (l). All these interactions have to be
taken into account in the renormalization process. The interactions of lower naive dimension,
however, merely lead to subdominant corrections and can be ignored for our purposes. Keeping
all the interactions of the same naive dimension, we have a renormalization in matrix form

V (l) → V̊(l) =
(

Z (l)
)−1

V(l), (36)

whereV(l) = (V (l),V (l)2 , . . .) is a vector that contains all the interactions generated byV(l)by the
renormalization process including V (l) itself. The V (l) are distinguished by the feature that the
interactions generated by V (l) do not in turn generate V (l), or, as we say, that the corresponding
composite fields O(l) are master operators [30, 31, 7, 8]. Because of their subordinate role,
we refer to the remaining operators O(l)

2 and so on as servants. The master operators are
associated with renormalization matrices Z (l) = 1 + O(u), where 1 stands for the unit matrix,
of a particularly simple structure

Z (l) =




Z (l) ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗


 , (37)

where the ∗ symbolize arbitrary elements. As a consequence of the simple structure of Z (l)

the servants can be neglected in calculating the scaling index of their master. This can be
seen as follows. Due to equation (23) we are ultimately interested in derivatives of the Green

function with insertions of V (l), G2;V (l) , with respect to Kl(
↔
λ) evaluated at

↔
λ = 0. From the

renormalization of the master interaction,

V (l) = Z (l)V̊ (l) +
∑
α�2

Y (l)
α V̊ (l)α , (38)

where the Y (l)
α are elements of Z (l), it follows that

G2(r, t)V (l) = Z (l)G2(r, t)V̊ (l) +
∑
α�2

Y (l)
α G2(r, t)V̊ (l)α . (39)

The coefficients Y (l)
α pertaining to the servants are required to make G2(r, t)V (l) free of ε-

poles. However, only the first term on the right-hand side of equation (39) gives a non-zero

contribution when we differentiate with respect to Kl(
↔
λ) and then set

↔
λ = 0 since only the

insertion of V̊ (l) produces the polynomial structure of Kl(
↔
λ). Hence, as long as we restrict

ourselves to the properties of the noise cumulants C (l)
R (x, x′) we only need for our practical

purposes the multiplicative renormalizations of the V (l), i.e., we only need the element Z (l).
We can set all the other renormalizations Y (l)

α pertaining to the servants formally to zero.
Understanding that the renormalization of the dangerously irrelevant interactions V (l) is

subtle but that we can ignore these subtleties for our practical purposes, we treat their couplings
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Table 1. The coefficients γ (l)2 appearing in equation (43).

l 2 3 4 5

γ
(l)
2 −0.242 49 −0.265 23 −0.269 88 −0.270 45

vl in much the same way asw. Doing so we have to bear in mind, of course, that this procedure
only makes sense if we expand all Feynman diagrams in powers of vl and truncate this expansion
after linear order (which corresponds to using single insertions). Then, we renormalize the vl

by setting

vl → v̊l = Z−1
ρ Zvlvl = Z (l)vl (40)

Zvl is known for arbitrary l = 0, 1, 2, . . . to one-loop order and for most important values of l
to two-loop order. Below we will need to know Zvl explicitly to one-loop order for calculating
the desired logarithmic corrections. To this order Zvl is related to the Zwr by

Zvl = Zw2l−1 = 1 +

(
1 − 1

4l

)
u

2ε
(41)

as we show in the appendix. The two-point correlation function is now governed by the RGE{[Dµ,1 + γ
]

+
∑

l

γ (l)vl
∂

∂vl

}
G2

(
r, ρt, w

↔
λ

2; {vl Kl(
↔
λ)}, τ, u, µ

)
= 0. (42)

The Gell-Mann–Low function γ (l) stemming from Z (l) is

γ (l) = γ
(l)
1 u + γ (l)2 u2 + O(u3), (43)

where

γ
(l)
1 = ζ2l−1,1 = 3

8
− 1

22l+1
. (44)

γ (l) satisfies the relations γ (0) = ζ−1 = γ − ζρ and γ (1) = ζ1. γ (l)2 is stated for l = 2, . . . , 5
in table 1.

4. Logarithmic corrections

The RGE can be solved by the method of characteristics whereby one introduces a single
flow parameter � and sets up characteristic equations that describe how the scaling parameters
transform under a change of �. The characteristic for the momentum scale µ is particularly
simple and has the solution µ̄(�) = µ�, i.e., a change of � corresponds to a change of the
external inverse length scale. With the help of the solution to the remaining characteristics one
obtains

G2 (r, ρt, wrr (λ); {vl Kl(λ)}, τ, u, µ) = (µ�)d⊥ Z̄(�)

× G2

(
µ� r, (µ�)2ρ̄(�) t,

w̄r (�)r (λ)

(µ�)2
;
{
v̄l(�) Kl(λ)

(µ�)2

}
,
τ̄ (�)

(µ�)2
, ū(�), 1

)

(45)

as a solution to the RGE. This formula applies to the nonlinear as well as to the noisy RRDN
with the understanding that we have to set vl = 0 and λ = �λ in the former and r = 1

and λ = ↔
λ in the latter case. At this stage the scaling solution (45) is still rather formal

since Z̄(�), ρ̄(�), τ̄ (�), w̄r (�), v̄(�) and ū(�) require specification. Below the upper critical
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dimension, these quantities display power law behaviour for � → 0 described by the well
known critical exponents of the DP universality class, the resistance exponents φr , and the
multifractal exponentsψl of the RRDN. Directly in d⊥ = 4, they depend logarithmically on �
and hence their behaviour is qualitatively different from the lower dimensional case.

Now we will state and solve the characteristics directly for d⊥ = 4. The characteristic for
the dimensionless coupling constant u is given by

�
dū

d�
= β(ū). (46)

The solution to this differential equation for ε = 0 is

� = �(ū) = �0ū−β3/β
2
2 exp

[
− 1

β2ū
+ O(ū)

]
, (47)

where �0 is an integration constant. The remaining characteristics are all of the same structure,
namely

�
d ln Q̄(ū)

d�
= q(ū), (48)

where Q is a placeholder for Z , ρ, τ , wr and vl , respectively, and q is a placeholder for γ , ζρ ,
κ , ζr and γ (l), respectively. Exploiting � d/d� = β d/dū one obtains the solution

Q̄(ū) = Q0ūq1/β2 exp

[
(q2β2 − q1β3)

β2
2

ū + O(ū2)

]
, (49)

where Q0 is a non-universal integration constant.
After having reviewed some of the cornerstones of the field theory of the RRDN we will

now determine the critical behaviour of the connectivity, the average resistance, the fractal
masses of the backbone, the chemical path and the red bonds as well as the multifractal
moments of the current distribution at the upper critical dimension d⊥ = 4. For simplicity, we
set in the following x′ = (r′, 0) = (0, 0) and x = (r, 0) = (0, t) and restrict our attention to
the behaviour of the aforementioned quantities as functions of the time-like variable t . To this
end we choose

(µ�)2ρ̄(�)t = X0, (50)

where X0 is a constant of order 1. With this choice ū and � tend to zero for ρµ2t → ∞. From
equations (47) and (49), specialized to ρ̄, we obtain with β2 = 3/2

t = t0ū−2a/3 exp

(
4

3ū

)
[1 + O(ū)] , (51)

where t0 = X0/(µ
2�2

0 ρ0) is yet another non-universal constant and a is given by

a = β2ζρ,1 − 2β3

2β2
= 157

192
+

53

96
ln

4

3
= 0.976 53. (52)

At certain stages it will be more convenient to use, instead of using the original t , the variable

s = 3
4 ln(t/t0). (53)

For s, equation (51) translates into

s = ū−1 − a ln ū + O(ū). (54)

Finally, we find by using equation (54)

ū = s−1 exp

[
a

ln s

s
+ O

(
ln2 s

s2
,

ln s

s2
,

1

s2

)]
(55)

for the dimensionless coupling constant as a function of the longitudinal coordinate s.
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At this point we know the general scaling form (45) of the two-point correlation function
and thus we have an important part of the information that we need to understand the critical
behaviour of connectivity, the fractal masses and the multifractal moments at the upper critical
dimension. However, for determining the logarithmic corrections to the scaling behaviour of
these quantities beyond the leading correction, we need to know some additional information
about the scaling function appearing on the right-hand side of equation (45).

Expanding the right-hand side of equation (45) at criticality τ = 0 to linear order in
w̄rr and v̄l Kl , and by using equation (50) we find that the two-point correlation function is
at d⊥ = 4 of the form

G2(0, ρt, wrr (λ); {vl Kl(λ)}, 0, u, µ) = (µ�)4 Z̄(ū)G2(0, X0, 0; {0}, 0, ū, 1)

×
{

1 + (µ�)−2w̄r (ū)r (λ)g
′
2(X0, ū)

+ (µ�)−2
∑

l

v̄l(ū)Kl(λ)g
(l)
2 (X0, ū) · · ·

}
, (56)

with expansion coefficients g′
2(X0, ū) = ∂ ln G2/∂wrr |λ=0 and g(l)2 (X0, ū) =

∂ ln G2/∂vl Kl |λ=0. For the second logarithmic correction we have to calculate the functions
G2(0, X0, 0; {0}, 0, ū, 1), g′

2(X0, ū) and g(l)2 (X0, ū) to one-loop order. Some details on these
calculations can be found in the appendix.

4.1. Connectivity, average resistance and fractal masses

Our one-loop calculation sketched in the appendix yields that the scaling functions relevant
for the connectivity, the average resistance and the fractal masses are given by

G2(0, X0, 0; ū, 0, 1) = c0
[
1 + AP ū + O(ū2)

]
, (57a)

g′
2(X0, ū) = c1

[
1 + Ar ū + O(ū2)

]
, (57b)

where c0 and c1 are non-universal constants and where AP and Ar are amplitudes that can
depend on X0. AP turns out being independent of X0,

AP = 3
16 . (58)

For the amplitude Ar we find

Ar = 1 − ln 2 − Z
8

(
1 − 1

2r

)
, (59)

where Z = Z(X0) is a non-universal constant that we have defined, to stay consistent with our
work on logarithmic corrections for dynamic properties of DP [14], as Z(X0) = CE + ln(2X0)

with CE = 0.577 215 . . . being Euler’s constant. Alternatively, it is possible to choose the
arbitrary parameter X0 in such a way that Z = 1 − ln 2 so that the amplitude Ar becomes
simply zero. Physically, this would only change the non-universal timescale t0 entering the
scaling functions through equation (51). However, we prefer to choose Z as we did for two
reasons. First, as mentioned above, this allows us to stay consistent with previous work.
Second, leaving Z in our formulas has the advantage that Z can be used as a fit parameter
when it comes to comparing our results to simulations.

Now we are finally in the position to assemble our results for the connectivity and the
average (nonlinear) resistance. Merging equations (11), (56) and (57a) we obtain for the
connectivity

P(t) ∼ (µ�)4 Z̄(ū)
[
1 + AP ū + O(ū2)

]
. (60)
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Exploiting our choice (50) and using our knowledge about the solutions of the characteristics
we find

t2 P(t)/P0 =
(

1 +
3ū

16

)
exp(−cPū)

[
1 + O(ū2)

]
(61a)

=
(

1 +
3

16s

){
1 − cP

s
+ O

(
ln2 s

s2
,

ln s

s2
,

1

s2

)}
, (61b)

where P0 is a non-universal constant and

cP = 2 ζρ,2 − γ2

β2
= − 1

192

(
7 − 34 ln

4

3

)
= 0.014 48. (62)

Equation (61a) in conjunction with equation (51) can be viewed as a parametric representation
of the tuple (t2 P(t), t) with ū serving as the free parameter. Equation (61b) states our result in
a more traditional form. Though perhaps less intuitive, the parametric form has the conceptual
advantage that it involves only one expansion variable, viz. the effective coupling constant ū,
whereas in the traditional form functions of the longitudinal variable such as 1/s2, ln s/s2,
ln2 s/s2, and so on, compete against each other. Note that the usually leading logarithmic
correction is absent in case of the connectivity P(t). Hence, one has to go to the next order,
as we did, to see a deviation from the mean-field field behaviour P(t) ∝ t−2.

Next we turn to the average nonlinear resistance. Using equations (6), (45), (56), (57b)
as well as equation (12) yields

MRr (t) ∼ (µ�)−2w̄r (ū)
[
1 + Ar ū + O(ū2)

]
. (63)

Inserting several intermediate results we are led to

t−1 MRr (t)/MRr ,0 = (ū−1 + B
)ar exp(−cr ū)

[
1 + O(ū2)

]
(64a)

= (s + B
)ar

{
1 − br ln s + cr

s
+ O

(
ln2 s

s2
,

ln s

s2
,

1

s2

)}
(64b)

with a non-universal constant MRr ,0 and

ar = −ζρ,1 + ζr,1

β2
= −1 − 2−r

6
, (65a)

br = aar , (65b)

cr = (ζρ,1 + ζr,1)β3

β2
2

− ζρ,2 + ζr,2

β2
, (65c)

B = Ar

ar
= −3

4

(
1 − ln 2 − Z). (65d)

As explained above, the physically most important limits of r are r → 1,−1+,∞, 0+ since
these limits yield, respectively, the average linear resistance and the fractal masses of the
backbone, the red bonds and the chemical path. The numerical values of br and cr in the limits
r → 1,−1+,∞ are collected in table 2. In the limit r → 0+ the quantities ar , br , cr , and Ar

vanish and the amplitude B does not make much sense. This vanishing of the parameters had
to be expected because in DP the length of the chemical path between the two points (0, 0)
and (0, t) is essentially t and that hence

Mmin ∝ t (66)

with no logarithmic correction. The fact that our result is in conformity with this anticipated
behaviour is reassuring and we rate it as an important consistency check for our calculation.
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Table 2. Values of the numbers br and cr appearing in equations (64).

r −1 1 ∞
br 0.162 75 −0.081 37 −0.162 75
cr 0.102 11 −0.025 19 −0.035 89

Table 3. Values of the numbers b(l) and c(l) , appearing in equations (69).

l 2 3 4 5

b(l) −0.142 41 −0.157 66 −0.161 48 −0.162 43
c(l) −0.032 63 −0.033 71 −0.034 66 −0.035 30

4.2. Multifractal moments

The logarithmic corrections for the multifractal moments can be calculated in much the same
way as the corrections for the average nonlinear resistance. Our one-loop calculation sketched
in the appendix yields

g(l)2 (X0, ū) = c1
[
1 + A2l−1 ū + O(ū2)

]
, (67)

where the amplitude A2l−1 can be read off from equation (59) setting r = 2l − 1. Using
equations (22), (25), (56), (67) as well as (23) and equation (67) we obtain

M (l)
I (t) ∼ (µ�)−2v̄(l)(ū)

(
1 + A2l−1ū + O(ū2)

)
. (68)

Recalling our choice for the flow parameter, equation (50), and using that the solution of the
characteristic for v̄(l) is of the form (49) we obtain

t−1 M (l)
I (t)/M (l)

I,0 = (ū−1 + B
)a(l)

exp(−c(l) ū)
[
1 + O(ū2)

]
(69a)

= (s + B
)a(l){

1 − b(l) ln s + c(l)

s
+ O

(
ln2 s

s2
,

ln s

s2
,

1

s2

)}
(69b)

where M (l)
I,0 are non-universal constants. The amplitude B is the same as the one in

equation (65). The parameters a(l) and b(l) are related to the parameters of equations (65)
by

a(l) = a2l−1, b(l) = b2l−1, (70)

and c(l) is given by

c(l)I = (ζρ,1 + γ (l)1 )β3

β2
2

− ζρ,2 + γ (l)2

β2
. (71)

Numerical values for the coefficient c(l)I can be found in table 3. Note that M (1)
I ∼ C (1)

R = MR

as it should. Note also that M (0)
I ∼ C (0)

R = MB. This must hold since
∑

b(Ib/I )2l coincides
for l → 0 with the number of current-carrying bonds and thus M (0)

I = MB.

5. Concluding remarks

In summary, we have studied the electrical transport properties of DP clusters by using the
methods of renormalized field theory. To our knowledge, logarithmic corrections for the
connectivity, the average resistance, the fractal masses of the backbone, the red bonds, the
chemical path and the multifractal moments of the current distribution have not previously
been considered. We calculated these corrections up to and including the next to leading
correction.
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Figure A.1. Diagrammatic representation of the self-energy �(q, t, λ) at one-loop order.

We hope that our work triggers complementary numerical simulations. With today’s
computer hardware and sophisticated algorithms, our results should be testable by numerical
work. Because we went beyond just calculating the leading corrections, we are optimistic that
our results compare well with simulations, perhaps even quantitatively.

Appendix. Amplitudes

In this appendix we deliver some details on our calculation of the amplitudes entering the
second logarithmic corrections. First, let us look at the two-point correlation function at
zero-loop level. As a function of the longitudinal and the transversal coordinates we have

G(0)
2 (r, t, λ) =

∫
p

exp(ip · r)G̃+(p, t, λ), (A.1)

where
∫

p is an abbreviation for 1/(2π)d⊥
∫

dd⊥ p. To treat the nonlinear and the noisy RRDN
in one go, we use

G̃+(p, t, λ) = (1 − δλ,0
)

exp
[

− ρ
(
τ + p2 + L(λ)

)
t
]

(A.2)

as our Gaussian propagator. Here, L(λ) stands for the polynomial

L(λ) = wrr (λ) +
∑

l

vl Kl(λ). (A.3)

As in section 4 it is understood that we have to set vl = 0 and λ = �λ or r = 1 and λ = ↔
λ to

retrieve the nonlinear or the noisy RRDN, respectively.
To one-loop order the correlation function is governed by the Dyson-equation

G2(r, t, λ)− G(0)
2 (r, t, λ)

=
∫

p
exp(ip · r)

∫ t

0
dt1

∫ t1

0
dt2 G̃(p, t − t1, λ)

×�(p, t1 − t2, λ)G̃(p, t2, λ), (A.4)

where � stands for the self-energy� depicted in figure A.1,

�(p, s, λ) = ρ2g2

2

∑
κ

∫
q

{
−2 exp

(−ρL(λ)s
)

+
∑
κ

exp
[

− ρ
(
L(λ/2 + κ) + L(λ/2 − κ)

)
s
]}

×
∫

q
exp

[
− ρ

(
2τ + (p/2 + q)2 + (p/2 − q)2

)
s
]
. (A.5)

Note that we have included here an extra term independent of κ to switch from the initially
restricted current summation to a current summation without the restriction κ �= 0. The
integration over q is straightforward. After switching from the current summation to an
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integration over κ we employ the saddle point method which we can since λ0  0. From the
symmetry of the integrand it follows, irrespectively of the detailed form of L(λ), that the locus
of the saddle-point is at κ = 0. Consequently, in the limit D → 0,

�(p, s, λ) = ρ2g2

2

(
exp
(−2ρL(λ/2)s

)− 2 exp
(−ρL(λ)s

))

× (8πρs
)−d⊥/2 exp

(−ρ(2τ + p2/2)s
)
. (A.6)

One of the time-integrations and the p-integration in equation (A.4) are easily done. Being in-
terested in criticality we set τ = 0. For simplicity, we restrict our attention to r = 0. We expand
the right-hand side of equation (A.6) to first order in L and u. To prepare for the renormaliza-
tion step to follow, we mark unrenormalized quantities with an open circle, s → s̊, ρ → ρ̊ and
so on as we do in the renormalization schemes (28) and (40). Expressing various quantities
through their renormalized counterparts as specified by equations (28) and (40) we arrive at

G̊2(0, t, λ)/G̊(0)
2 (0, t, λ) = 1 − u(2ρµ2t)2−d⊥/2

8�(1 + ε/2)

×
∫ 1

0
dx

(1 − x)[
x(1 − x/2)

]d⊥/2
{

1 + xρt
[
2L(λ/2)− L(λ)

]}
. (A.7)

The x-integral is performed using dimensional regularization. We obtain, up to terms of O(ε),

G̊2(0, t, λ)/G̊(0)
2 (0, t, λ) = 1 +

u(2ρµ2t)ε/2

8�(1 + ε/2)

×
[
2 + ρt

(
2/ε + ln 2 − 1

)[
L(λ)− 2L(λ/2)

]]
. (A.8)

Equation (28) implies that the correlation function is renormalized by

G2(0, t, λ) = Z−1G̊2(0, t, λ). (A.9)

Using again the renormalization factors stated in equations (30) and (41) we get

ρ̊ L̊(λ) = ρ̊ẘrr (λ) +
∑

l

ρ̊v̊l Kl(λ)

= ρ

(
Z−1 Zwrwrr (λ) +

∑
l

Z−1 Zvlvl Kl(λ)

)

= ρ

(
L(λ) +

u

4ε

[
L(λ)− 2L(λ/2)

])
, (A.10)

where we have used the homogeneity of the polynomialsr (λ) and Kl(λ). From this relation
we obtain after careful expansion in u and L(λ) to first order

Z−1G̊(0)
2 (0, t, λ) = (1 − u/16)

(4πρt)d⊥/2

{
1 − ρt

[
L(λ) +

u

4ε

[
L(λ)− 2L(λ/2)

]]}
. (A.11)

Using this result in equation (A.8) we obtain after a final ε-expansion

G2(0, t, λ) = (1 − u/16)

(4πρt)d⊥/2

{(
1 + u/4

)(
1 − ρt L(λ)

)
+ ρt

u

8
(ln 2 − 1)

[
L(λ)− 2L(λ/2)

]

+ ρt
u

4ε

[ (2ρµ2t)ε/2

�(1 + ε/2)
− 1
][

L(λ)− 2L(λ/2)
]}

= (1 + 3u/16)

(4πρt)2

{
1 − ρt L(λ)

+ ρt
u

8
(ln 2 − 1 + ln(2ρµ2t) + CE )[L(λ)− 2L(λ/2)]

}
. (A.12)



S2012 O Stenull and H-K Janssen

Taking into account equation (50) finally yields

G2(0, t0, λ) = c0
(
1 + 3u/16

){
1 − c1

[(
1 + Ar u

)
wrr (λ) +

∑
l

(
1 + A2l−1u

)
vl Kl(λ)

]}

(A.13)

with non-universal constants c0 and c1 and the amplitude Ar as stated in equation (59).
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